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ABSTRACT

Determination of the kinetic parameters of the thermal decomposition of solids usually
requires a knowledge of the function describing the mechanism of decomposition. Research
was made to obtain a method that enables the selection of one of the 16 functions used in the
literature in such a way that it best describes experimental data in the isothermal measure-
ments. The results obtained indicate that the best fit of experimental and calculated data is
gained by using the weighted least-squares method with the equation g(a) = k7 + b and using
criteria based on the minimization of the difference between a,, and a .

INTRODUCTION

The determination of kinetic parameters of the thermal decomposition of
solids, such as the apparent activation energy, E, Arrhenius pre-exponential
factor, A, or the reaction order, n, requires the knowledge of a function
describing the mechanism of the process investigated. The determination of
this function, defined in the literature as f(«) in the differential form, or g(«)
in the integral form, is made by testing which theoretical model of the
thermal decomposition mechanism best describes the experimental data. Of
the methods most often used for the identification of the equation of a
function that gives the best fit to the experimental data are:

(1) linearity in a system g(a)—t (¢t = time);

(2) comparison of plots theoretically obtained with the assumption of
particular models of the g(a) function with experimental data; the plots are
applied in systems: a-t. (¢, = the reduced time, which is the ratio t/¢;
where ¢, is the time at which the progress of the decomposition, a = 0.5),
da/dt-t, da/dt-a.

Mathematically, the g(a) function, determined with the use of one of
these methods, best describes the reaction of thermal decomposition. The
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knowledge of this function can be a certain premise of the investigation of a
mechanism of reaction. Putting aside the question of whether the knowledge
of only a mathematical form of the g(a) function gives any information on
real physico-chemical phenomena occurring during the thermal decomposi-
tion, one should notice that the exact selection of this function can signifi-
cantly influence the results of kinetic calculations; e.g., during the calcula-
tion of kinetic parameters with the use of the Arrhenius equation, experi-
mental data will determine two different values of rate constants for two
different g(a) functions, and then in the system of In k-1/T (T=
temperature, K) can give two various values of the activation energy, E. In
Criado and Gonzales’ work [1] three g(a«) functions based on completely
different theoretical assumptions having the same high correlation coefficient
(higher than 0.9990) gave various values of the activation energy for the
decomposition of cadmium carbonate (31.9, 39.8 and 71.3 kcal mol !). The
above example, being one of several to be found in the literature, indicates
that attributing a physico-chemical meaning to the g(«) function can arouse
some doubts. For that reason research is necessary on a method enabling the
selection of the g(a) function in order to obtain the best fit of experimental
data. Only in this case will the value of the activation energy calculated on
its basis most precisely characterise the influence of temperature on the rate
of thermal decomposition. In this work the problem of the determination of
the g(a) function giving the best fit of experimental data was restricted to
isothermal measurements only since this issue in dynamic measurements
with rising temperature arouses many doubts [2,3].

BASIC THEORY
Selection of the straight-line model

Assuming that the error connected with the determination of time is
significantly smaller than the error of the determination of the value of the
progress of the decomposition, the least-squares method (LSM) can be used
for defining the rate constant as a slope of the straight line in the coordinate
system g(a)-t.

According to the relationship accepted in the literature, the kinetic equa-
tion in the integrated form is as follows

gla) =kt (1)

This form of representation seems to suggest the application of the LSM to
the relationship y = ax (model 1). The second possibility is the use of the
LSM with the relationship y = ax + b (model 2).

The latter possibility seems to be more correct since:
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(1) in the initial stage of measurement, errors connected with unstabilized
experimental conditions can occur;

(2) the deviation of experimental points (g(«) values) in relation to
equations of the type y = ax + b can be smaller than for those of the type
y = ax.

Selection of weights

One of the assumptions of usual LSM is the assumption of the constant
variation of the dependent variable (in our case g(a)). In the case when this
assumption is not fulfilled, the weighted method of least squares should be
applied.

The weights used most often are the inverse of the deviation of the
dependent variable [4].

The deviation of a can be estimated in the following way: the fraction
reacted is calculated from the relation

Am

Am;

(2)

a ==
where Am = final mass loss (means complete decomposition of the sample),

Am = mass loss at time ¢. The deviation can be calculated on the basis of
Am and Am; using the propagation of error [5]

da |2 da \°
2_ .2 2
s"—sA’"(aAm) +SA""( aAmf) (3)

One can assume that the deviation s3,, = 53, = s*= const. From eqn. (3),
after calculating corresponding partial derivatives, one obtains

1

2_ 2 2

S;=3S l1+a 4
e @
Multiplication of the deviation by a constant value does not influence the
results of calculations [6], thus, since s* and Am? are constant values, for

weights calculation, one can use
s2=1+a? (5)

The second reason of the use of weighted LSM is connected with the fact
that rate constants, k, are determined from the linear relationship of the
g(a) value with time, ¢. Transforming a into g(a), one should also corre-
spondingly transform s2 into sgz(a). The deviation of g(a) is calculated from
the formula

i =s3(g(a))2 (6)

g(a) Ja
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TABLE 1

Kinetic functions for description of the thermal decomposition of solids used in the present
paper

Function No. g(a) Deviation of g(«)
1 o? 4a’s?
2 ol? 52/(4a)
3 o7 52/(9a?)
4 o7 52/(16a*%)
5 1-(1-a)'? s2/(4—4a)
6 1-(1-a)/? 5271901 — a)*?)
7 —In(1- @) s2/(1—a?)
8 [—In(1- a)]*? 452 /(3(1- )[—In(1 - a)]'/?)?
9 [—In(1- a)]'/? s2/{4—In(1- @)J1— a)?)
10 {—In(1~ a)]'/? s2/7(3[—In(1- @)]**(1— a)}?
11 {—In(1- a)]*/* s2/{4—In(1 - )]**(1 - a))?
12 (1- a)In(l - &)+« s2[—In(1 - a))?
13 (1-2a/3)—(1- a)?? 4s52/(3[(1- a)~ 2 -1]}?
14 1-(1-a)'?)? 4s21-(1-a)'?13/130 - )1
15 Ina/(1- ) s2 /la(1— a)]?
16 1/0-a)-1 s2/1- a)?

and for weights used for the calculation of rate constants, k, for particular
g( a) functions, the following is used

w=— (7)

Sg(a)

Formulae on the basis of which sgz(a) were calculated are shown in Table 1.
Selection of the function g(a)

Values most often used for the selection of g(a) which best describe
experimental results are: the correlation coefficient (for values of g(a) and
t); the deviation of the regression coefficient of the straight line or the
deviation of experimental g(«) values in relation to the straight line de-
termined [7-12]; the ratio of the standard deviations of the regression
coefficient to its actual value [9]. One finds from the literature that the
correlation coefficient is not a good index for selecting the proper g(a)
equation [9,13].

The application of statistical criteria is possible with the assumption that
data have a normal distribution. However, in the case of transforming « into
g( @) values, the above condition is not satisfied. In this case, the application
of tests connected with a normal distribution is unjustified.

Since the aim of the calculations is to determine parameters that describe
experimental data relatively well, the conformity of a.,, and a. (on the
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basis of the equations g(a) = kt or g(a) = kt + b) is often used as a criterion
of selecting the g(a) function [14-16].
In this paper the following value (at constant temperature) was calculated

1 & 2
R= ;‘l— Z (aca]c,i - aexp,x) (8)
1=1

where n = the number of experimental « values, a.,,, = the progress of
decomposition (formula 2) for a given time, ¢, a ;= the a value calculated
for a given time and on the basis of the corresponding g(a) function that
equals k¢ or kt + b. From the g(a) functions used, the function with the
minimum R value is selected as the one that best describes the experimental
data.

During the study of series obtained at various temperatures, an additional
difficulty, connected with the determination of the form of the g(a) function,
arises. It occurs when different g(a) functions are selected for various
temperatures. In this case the function which best describes the data for the
maximum number of temperatures is selected. Another method is by increas-
ing the number of experimental data on the basis of which the selection of
g(a) is made (it is possible to increase the number of measurements at a
given temperature, or to conduct measurements for further temperatures).
This can simplify the selection of the g(a) function describing the thermal
decomposition over the whole range of temperatures investigated by the
increase in the number of series of isothermal measurements best described
by the same g(«) function.

Apart from the determination of the g(«) function with the minimum R
value (eqn. 8), still another method exists for the selection of the g(a)
function: for particular g(a) functions at different temperatures, rate con-
stants, k., ,, are determined then with the non-linear least-squares method
[6], coefficients A and E of the Arrhenius equation are determined from the
relationship

n
2
—E/RT, _ .
) (kcxp,,—Ae / ) = min (9)
=1
Next, using the Arrhenius equation, rate constants, k,.,, for particular
temperatures are determined

Kearc,, = Ae™E/5T (10)
and on their basis a, is calculated after solution of the equation

8 @cac) = Kearc, ! (11)
or

g(acate) = a2 + b, (12)

The value of b, was calculated during the calculation of kexp.. by applying
the LSM.
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For all pairs (@, @), the following can be obtained

o

S =_]1V E E (aexp,ij - acalc,ij)z (13)
=1y =1

where /= the number of temperatures, n,=the number of the stage of

decomposition at temperature i, N = the sumof n,, N=X/_.n,, Uexp,,, = the

progress of the decomposition determined experimentally, a.,.,, = the pro-

gress of the decomposition determined from the Arrhenius equation for a

given g(a).

The value of S was calculated for these a
®ca,i, elongs to the range 0-1.

The selection of the g(a) function on the basis of the S consists of
establishing the g(a) function with the minimum S value. In this case the
mean square of the difference between calculated (on the basis of the
Arrehenius equation) and experimental a values is a minimum for the g(a)
selected.

exp.iy> Qcale,;, Pairs for which

EXPERIMENTAL

The present work compared several criteria for selection of the g(a)
function connected with the application of the LSM for determining rate
constants of the isothermal decomposition of calcium carbonate. Table 1
shows the g(a) functions most often used in investigations of the kinetics of
thermal decomposition of solids.

The decomposition of polycrystalline calcium carbonate (manufactured by
Merck, p.a.) was carried out on a Mettler 2000-C thermoanalyser. Measure-
ments were made in a nitrogen atmosphere in the temperature range 973-1043
K. The mass of decomposing calcium carbonate was ~ 20 mg.

The range of temperatures (and particularly the value of maximum
temperature) was chosen so that the mass loss was a minimum under
unstabilized measuring conditions. Isothermal conditions, on average, were
achieved with a progress of decomposition a = 0.02 only at the highest
temperatures with a = 0.05.

RESULTS AND DISCUSSION

Table 2 shows the experimental results. The algorithm of the determina-
tion of straight-line parameters was evaluated in accordance with refs. 17
and 18. The calculations were realized using a program written in BASIC for
a microcomputer with a 48k RAM.

For each temperature and particular g(a«) function the straight-line
parameters and their deviations were calculated (correspondingly for models
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TABLE 2

Isothermal decomposition of CaCO; under nitrogen (Am; = final mass loss (mg), ¢ = time
(min))

T(K)= 973 983 993 1003 1013 1023 1033 1043
Am,= 882 8.86 8.90 8.89 8.91 8.98 8.92 8.93

t Am t Am ¢t Am + Am ¢ Am ¢ Am ¢t Am ¢t Am
3 0.48 1.8 040 15 035 22 064 06 019 045 030 1 042 1.35 067
6 1.04 48 108 45 118 3 0.69 21 074 195 097 2 1.00 2.00 1.17
9 1.60 78 177 7.5 198 4 137 36 139 345 172 3 1.60 2.50 1.67
12 2.12 108 240 105 280 5 176 51 202 495 253 4 221 310 217
15 2.26 13.8 310 135 360 6 212 66 264 645 322 5 281 3.65 267
18 3.20 16.8 3.75 165 438 8 284 81 326 795 399 6 343 4.80 3.67
21 373 19.8 438 195 515 10 358 9.6 3.89 945 475 7 403 6.00 4.67
24 4.28 228 502 225 592 12 429 11.1 453 1095 548 8 460 721 567
27 4.79 258 563 255 6.60 14 506 126 514 1245 618 9 520 845 6.67
30 5.31 28.8 6.27 285 7.33 16 569 141 576 1395 68610 5.57 9.10 7.17
33 5.80 31.8 6.84 315 8.03 18 6.32 15.6 6.34 1545 75511 631 975 7.67
36 6.28 348 7.42 345 865 20 699 17.1 6.89 1695 81812 6.8910.50 8.17
39 6.73 37.8 7.97 22 761 186 747 18.45 8.7813 7.4111.30 8.67
42 7.21 408 8.47 24 819 201 7.55 14 7.94

45 7.66 25 8.49 21.6 8.47 15 8.34

48 8.08 26 8.72 16 8.82

51 8.50

TABLE 3

Weights calculated according to eqns. (5), (6) and (7) at 1043 K

Function No. a=0.075 0.187 0.859 0.971

1 14.1627 6.9069 0.1950 0.1365

2 0.2984 0.7228 1.9771 1.9991

3 0.2832 0.9300 4.2285 4.4540

4 0.3270 1.2502 7.3292 7.8792

5 3.6792 3.1421 0.3248 0.0600

6 8.0657 6.5982 0.3804 0.0415

7 0.8508 0.6386 0.0115 0.0004

8 0.3494 0.5029 0.0403 0.0023

9 0.2654 0.5287 0.0897 0.0062

10 0.2551 0.7040 0.2526 0.0212

11 0.2965 0.9626 0.5023 0.0464

12 163.4798 22.5412 0.1501 0.0412

13 3225.3308 425.8514 1.5270 0.2287

14 3061.9163 370.9495 0.4138 0.0216

15 0.0048 0.0223 0.0085 0.0004

16 0.7279 0.4221 0.0002 3.699%x10~7
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1 and 2) using the simple and weighted LSMs. The weights were calculated
according to formulae (5), (6) and (7). Table 3 shows exemplary weights for
functions 1-16 (listed in Table 1). From these data it is evident that weights
change significantly depending on a. This fact justifies the application of the
weighted LSM.

In order to compare various criteria of the selection of the g(a) function
for which the dependence on time is approximated as much as possible to a
straight line, or as that best describing the dependence of a on time at a
given temperature, the following data were calculated:

(1) correlation coefficient, g(a) and ¢;

(2) ratio of standard deviation of regression coefficient to its actual value
(si/k);

(3) values of R (formula 8) (R, for model 1, R, for model 2);

(4) values of S (formula 12) (S, for model 1, S, for model 2).

Criteria 2-4 were calculated for the simple and weighted LSMs and
selected results are shown in Table 4. Table 5 presents the values of the
Arrhenius equation coefficients and of the criterion S.

Table 6 shows the g(a) functions which best satisfy particular criteria.

The above data indicate that selection of the g(a) function depends on the
method of calculation used—-the simple or weighted LSMs (models 1 or 2)
—and on the criterion selected. The data shown in Tables 4 and 5, as well as
other results not included in this paper, indicate that the best fit of the
experimental data and the calculated values is achieved with the use of the
weighted LSM and model 2.

CONCLUSIONS

Depending on the criteria applied, selection of various forms of the g(a)
function describing the process of thermal decomposition is possible. This
can lead to various values of the kinetic parameters 4 and E which change
according to the form of the g(a) function applied to calculations.

The results presented indicate that the best fit of experimental and
calculated data was obtained using the weighted least-squares method with
the equation g(a) = kt + b. The selection of the g(a) function best describing
the experimental data should be made on the basis of criteria considering the

difference between a,, and a ..
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