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ABSTRACT 

Determination of the kinetic parameters of the thermal decomposition of solids usually 
requires a knowledge of the function describing the mechanism of decomposition. Research 
was made to obtain a method that enables the selection of one of the 16 functions used in the 
literature in such a way that it best describes experimental data in the isothermal measure- 
ments. The results obtained indicate that the best fit of experimental and calculated data is 
gained by using the weighted least-squares method with the equation g( cu) = kt + b and using 
criteria based on the minimization of the difference between a,,, and (Y,,,~. 

INTRODUCTION 

The determination of kinetic parameters of the thermal decomposition of 
solids, such as the apparent activation energy, E, Arrhenius pre-exponential 
factor, A, or the reaction order, n, requires the knowledge of a function 
describing the mechanism of the process investigated. The determination of 
this function, defined in the literature as f(a) in the differential form, or g( CX) 
in the integral form, is made by testing which theoretical model of the 
thermal decomposition mechanism best describes the experimental data. Of 
the methods most often used for the identification of the equation of a 
function that gives the best fit to the experimental data are: 

(1) linearity in a system g( a)-t (t = time); 
(2) comparison of plots theoretically obtained with the assumption of 

particular models of the g(a) function with experimental data; the plots are 
applied in systems: cr-t, (t, = the reduced time, which is the ratio t/t,, 
where t,,, is the time at which the progress of the decomposition, (Y = 0.5), 
dcu/dt-t, dci/dt-a. 

Mathematically, the g(a) function, determined with the use of one of 
these methods, best describes the reaction of thermal decomposition. The 
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knowledge of this function can be a certain premise of the investigation of a 
mechanism of reaction. Putting aside the question of whether the knowledge 
of only a mathematical form of the g(a) function gives any information on 
real physico-chemical phenomena occurring during the thermal decomposi- 
tion, one should notice that the exact selection of this function can signifi- 
cantly influence the results of kinetic calculations; e.g., during the calcula- 
tion of kinetic parameters with the use of the Arrhenius equation, experi- 
mental data will determine two different values of rate constants for two 
different g(a) functions, and then in the system of In k-l/T (T = 
temperature, K) can give two various values of the activation energy, E. In 
Criado and Gonzales’ work [l] three g(a) functions based on completely 
different theoretical assumptions having the same high correlation coefficient 
(higher than 0.9990) gave various values of the activation energy for the 
decomposition of cadmium carbonate (31.9, 39.8 and 71.3 kcal mol-‘). The 
above example, being one of several to be found in the literature, indicates 
that attributing a physico-chemical meaning to the g(a) function can arouse 
some doubts. For that reason research is necessary on a method enabling the 
selection of the g(a) function in order to obtain the best fit of experimental 
data. Only in this case will the value of the activation energy calculated on 
its basis most precisely characterise the influence of temperature on the rate 
of thermal decomposition. In this work the problem of the determination of 
the g(a) function giving the best fit of experimental data was restricted to 
isothermal measurements only since this issue in dynamic measurements 
with rising temperature arouses many doubts [2,3]. 

BASIC THEORY 

Selection of the straight-line model 

Assuming that the error connected with the determination of time is 
significantly smaller than the error of the determination of the value of the 
progress of the decomposition, the least-squares method (LSM) can be used 
for defining the rate constant as a slope of the straight line in the coordinate 
system g( a)-t. 

According to the relationship accepted in the literature, the kinetic equa- 
tion in the integrated form is as follows 

g(a) = kt (1) 
This form of representation seems to suggest the application of the LSM to 
the relationship y = ax (model 1). The second possibility is the use of the 
LSM with the relationship y = ax + b (model 2). 

The latter possibility seems to be more correct since: 
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(1) in the initial stage of measurement, errors connected with unstabilized 
experimental conditions can occur; 

(2) the deviation of experimental points (g(a) values) in relation to 
equations of the type y = ax + b can be smaller than for those of the type 
y = ax. 

Selection of weights 

One of the assumptions of usual LSM is the assumption of the constant 
variation of the dependent variable (in our case g(a)). In the case when this 
assumption is not fulfilled, the weighted method of least squares should be 
applied. 

The weights used most often are the inverse of the deviation of the 
dependent variable [4]. 

The deviation of (Y can be estimated in the following way: the fraction 
reacted is calculated from the relation 

Am 
cY=am, (2) 

where Am, = final mass loss (means complete decomposition of the sample), 
Am = mass loss at time t. The deviation can be calculated on the basis of 
Am and Am, using the propagation of error [5] 

aa -_) 
2 

aAm + 
aa 

aAm, 1 
2 

(3) 

One can assume that the deviation siM = s&, = s2 = const. From eqn. (3) 
after calculating corresponding partial derivatives, one obtains 

s2 = s2 CX &Cl +a? 
f 

Multiplication of the deviation by a constant value does not influence 
results of calculations [6], thus, since s2 and Am: are constant values, 
weights calculation, one can use 

s2=1+(Y2 (I 

(4) 

the 
for 

(5) 

The second reason of the use of weighted LSM is connected with the fact 
that rate constants, k, are determined from the linear relationship of the 
g(a) value with time, t. Transforming (Y into g(a), one should also corre- 
spondingly transform si into s:(~,. The deviation of g(a) is calculated from 
the formula 

2 2g02 
‘g(e) = ‘a 

i 1 
acu 
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TABLE 1 

Kinetic functions for description of the thermal decomposition of solids used in the present 

paper 

Function No. 

1 
2 

3 
4 

5 
6 
I 

8 
9 

10 
11 
12 
13 
14 
15 
16 

g(a) 

a2 
&2 
J/3 

J/4 

1 - (1 - ay’= 
1 - (1 - a)1’3 
- ln(1 - a) 

[ - ln( 1 - a)] ‘j3 
[ - In(1 - CY)]‘/~ 
[ - ln(1 - 01)]‘/~ 
[ - ln(1 - (Y)]‘/~ 
(l- a) ln(l- a)+ a 

(1-2(~/3)-(1-a)~‘~ 
[l -(l- a)1’3]2 
In a/(1 - a) 

l/(1 - a)-1 

Deviation of g(a) 

4a2s2 

&(b 
s,2/(9a4’3) 
s:/(16a3”) 
s,2/(4-4a) 
sZ/[9(1- a)4’3] 
s,2/(1- a=) 
4s,2/(3(1- a)[-ln(l-- CI)]‘/~}~ 
s,2/{4[-ln(l-a)](l-a)2} 
s,2/{3[-ln(l-a)]2/3(1-a)}2 
si/{4[ -ln(l - CX)]~/~(~ - a)}= 
s,Z[-ln(l- a)]’ 
4si/{3[(1- a)-1’3 -1])2 
4s%[l -(l- ~-z)“~]~/[3(1- a)2’3]2 

d/[a(l - a)12 
s,z/(l- a)4 

and for weights used for the calculation of rate constants, k, for particular 
g( CX) functions, the following is used 

1 
WE- 

2 

%(a) 

(7) 

Formulae on the basis of which siC,) were calculated are shown in Table 1. 

Selection of the function g(a) 

Values most often used for the selection of g( CX) which best describe 
experimental results are: the correlation coefficient (for values of g(a) and 
t); the deviation of the regression coefficient of the straight line or the 
deviation of experimental g( CX) values in relation to the straight line de- 
termined [7-121; the ratio of the standard deviations of the regression 
coefficient to its actual value [9]. One finds from the literature that the 
correlation coefficient is not a good index for selecting the proper g(a) 
equation [9,13]. 

The application of statistical criteria is possible with the assumption that 
data have a normal distribution. However, in the case of transforming (Y into 
g(a) values, the above condition is not satisfied. In this case, the application 
of tests connected with a normal distribution is unjustified. 

Since the aim of the calculations is to determine parameters that describe 
experimental data relatively well, the conformity of (Y,_, and (Y,,,~ (on the 
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basis of the equations g(a) = kt or g(a) = kt + b) is often used as a criterion 
of selecting the g(a) function [14-161. 

In this paper the following value (at constant temperature) was calculated 

R = ; k (%lc,i - %p,r 1’ 
I=1 

(8) 

where n = the number of experimental (Y values, (~,r I = the progress of 
decomposition (formula 2) for a given time, t, a talc, i = the (Y value calculated 
for a given time and on the basis of the corresponding g(a) function that 
equals kt or kt + b. From the g(a) functions used, the function with the 
minimum R value is selected as the one that best describes the experimental 
data. 

During the study of series obtained at various temperatures, an additional 
difficulty, connected with the determination of the form of the g(a) function, 
arises. It occurs when different g( ar) functions are selected for various 
temperatures. In this case the function which best describes the data for the 
maximum number of temperatures is selected. Another method is by increas- 
ing the number of experimental data on the basis of which the selection of 
g(a) is made (it is possible to increase the number of measurements at a 
given temperature, or to conduct measurements for further temperatures). 
This can simplify the selection of the g( CY) function describing the thermal 
decomposition over the whole range of temperatures investigated by the 
increase in the number of series of isothermal measurements best described 
by the same g( ar) function. 

Apart from the determination of the g(a) function with the minimum R 
value (eqn. 8), still another method exists for the selection of the g(a) 
function: for particular g(a) functions at different temperatures, rate con- 
stants, kexp ,, are determined then with the non-linear least-squares method 
[6], coefficients A and E of the Arrhenius equation are determined from the 
relationship 

_ A~-E/RT 1 2 = min 

I=1 

Next, using the Arrhenius equation, rate constants, kcalc,,, for particular 
temperatures are determined 

k ca,c,, = AepElR7; (10) 
and on their basis (Y,,~~ is calculated after solution of the equation 

g(%lc) = k&J (11) 

or 

d %alc ) = kak.lt + b, (12) 
The value of b, was calculated during the calculation of kexp,r by applying 
the LSM, 
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For all pairs ( aeX,,, Q,), the following can be obtained 

where I= the number of temperatures, n, = the number of the stage of 
decomposition at temperature i, N = the sum of n,, N = C:=,nj, (alar,,] = the 
progress of the decomposition determined experimentally, (Y,,~~,~, = the pro- 
gress of the decomposition determined from the Arrhenius equation for a 
given g( a). 

The value of S was calculated for these (Y_.,,,, (Y,~~,~, pairs for which 
(Y ca,c,i, belongs to the range O-l. 

The selection of the g(a) function on the basis of the S consists of 
establishing the g(a) 
mean square of the 
Arrehenius equation) 
selected. 

EXPERIMENTAL 

The present work 

function with the minimum S value. In this case the 
difference between calculated (on the basis of the 
and experimental (Y values is a minimum for the g(a) 

compared several criteria for selection of the g(a) 
function connected with the application of the LSM for determining rate 
constants of the isothermal decomposition of calcium carbonate. Table 1 
shows the g(a) functions most often used in investigations of the kinetics of 
thermal decomposition of solids. 

The decomposition of polycrystalline calcium carbonate (manufactured by 
Merck, p.a.) was carried out on a Mettler 2000-C thermoanalyser. Measure- 
ments were made in a nitrogen atmosphere in the temperature range 973-1043 
K. The mass of decomposing calcium carbonate was - 20 mg. 

The range of temperatures (and particularly the value of maximum 
temperature) was chosen so that the mass loss was a minimum under 
unstabilized measuring conditions. Isothermal conditions, on average, were 
achieved with a progress of decomposition (Y = 0.02 only at the highest 
temperatures with LY = 0.05. 

RESULTS AND DISCUSSION 

Table 2 shows the experimental results. The algorithm of the determina- 
tion of straight-line parameters was evaluated in accordance with refs. 17 
and 18. The calculations were realized using a program written in BASIC for 
a microcomputer with a 48k RAM. 

For each temperature and particular g(a) function the straight-line 
parameters and their deviations were calculated (correspondingly for models 
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TABLE 2 

Isothermal decomposition of CaCO, under nitrogen (Am r = final mass loss (mg), t = time 

(tin)) 

T(K) = 973 983 993 1003 1013 1023 1033 1043 

Am, = 8.82 8.86 8.90 8.89 8.91 8.98 8.92 8.93 

t Am t Am t Am t Am t Am t Am t Am t Am 

3 0.48 
6 1.04 
9 1.60 

12 2.12 
15 2.26 
18 3.20 
21 3.73 
24 4.28 
27 4.79 
30 5.31 
33 5.80 
36 6.28 
39 6.73 
42 7.21 
45 7.66 
48 8.08 
51 8.50 

1.8 0.40 1.5 0.35 22 0.64 0.6 0.19 0.45 0.30 1 0.42 1.35 0.67 
4.8 1.08 4.5 1.18 3 0.69 2.1 0.74 1.95 0.97 2 1.00 2.00 1.17 
7.8 1.77 7.5 1.98 4 1.37 3.6 1.39 3.45 1.72 3 1.60 2.50 1.67 

10.8 2.40 10.5 2.80 5 1.76 5.1 2.02 4.95 2.53 4 2.21 3.10 2.17 
13.8 3.10 13.5 3.60 6 2.12 6.6 2.64 6.45 3.22 5 2.81 3.65 2.67 
16.8 3.75 16.5 4.38 8 2.84 8.1 3.26 7.95 3.99 6 3.43 4.80 3.67 
19.8 4.38 19.5 5.15 10 3.58 9.6 3.89 9.45 4.75 7 4.03 6.00 4.67 
22.8 5.02 22.5 5.92 12 4.29 11.1 4.53 10.95 5.48 8 4.60 7.21 5.67 
25.8 5.63 25.5 6.60 14 5.06 12.6 5.14 12.45 6.18 9 5.20 8.45 6.67 
28.8 6.27 28.5 7.33 16 5.69 14.1 5.76 13.95 6.86 10 5.57 9.10 7.17 
31.8 6.84 31.5 8.03 18 6.32 15.6 6.34 15.45 7.55 11 6.31 9.75 7.67 
34.8 7.42 34.5 8.65 20 6.99 17.1 6.89 16.95 8.18 12 6.89 10.50 8.17 
37.8 7.97 22 7.61 18.6 7.47 18.45 8.78 13 7.41 11.30 8.67 
40.8 8.47 24 8.19 20.1 7.99 14 7.94 

25 8.49 21.6 8.47 15 8.34 
26 8.72 16 8.82 

TABLE 3 

Weights calculated according to eqns. (5), (6) and (7) at 1043 K 

Function No. OL = 0.075 0.187 0.859 0.971 

1 14.1627 6.9069 0.1950 0.1365 

2 0.2984 0.7228 1.9771 1.9991 
3 0.2832 0.9300 4.2285 4.4540 

4 0.3270 1.2502 7.3292 7.8792 
5 3.6792 3.1421 0.3248 0.0600 

6 8.0657 6.5982 0.3804 0.0415 

7 0.8508 0.6386 0.0115 0.0004 
8 0.3494 0.5029 0.0403 0.0023 
9 0.2654 0.5287 0.0897 0.0062 

10 0.2551 0.7040 0.2526 0.0212 
11 0.2965 0.9626 0.5023 0.0464 
12 163.4798 22.5412 0.1501 0.0412 
13 3225.3308 425.8514 1.5270 0.2287 
14 3061.9163 370.9495 0.4138 0.0216 
15 0.0048 0.0223 0.0085 0.0004 

16 0.7279 0.4221 0.0002 3.699x lo-’ 
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1 and 2) using the simple and weighted LSMs. The weights were calculated 
according to formulae (5), (6) and (7). Table 3 shows exemplary weights for 
functions l-16 (listed in Table 1). From these data it is evident that weights 
change significantly depending on (Y. This fact justifies the application of the 
weighted LSM. 

In order to compare various criteria of the selection of the g(a) function 
for which the dependence on time is approximated as much as possible to a 
straight line, or as that best describing the dependence of cr on time at a 
given temperature, the following data were calculated: 

(1) correlation coefficient, g( (u) and t; 
(2) ratio of standard deviation of regression coefficient to its actual value 

(Sk/k); 
(3) values of R (formula 8) (R, for model 1, R, for model 2); 
(4) values of S (formula 12) (S, for model 1, S, for model 2). 
Criteria 2-4 were calculated for the simple and weighted LSMs and 

selected results are shown in Table 4. Table 5 presents the values of the 
Arrhenius equation coefficients and of the criterion S. 

Table 6 shows the g(a) functions which best satisfy particular criteria. 
The above data indicate that selection of the g(a) function depends on the 

method of calculation used-the simple or weighted LSMs (models 1 or 2) 
-and on the criterion selected. The data shown in Tables 4 and 5, as well as 
other results not included in this paper, indicate that the best fit of the 
experimental data and the calculated values is achieved with the use of the 
weighted LSM and model 2. 

CONCLUSIONS 

Depending on the criteria applied, selection of various forms of the g(a) 
function describing the process of thermal decomposition is possible. This 
can lead to various values of the kinetic parameters A and E which change 
according to the form of the g(a) function applied to calculations. 

The results presented indicate that the best fit of experimental and 
calculated data was obtained using the weighted least-squares method with 
the equation g(a) = kt + b. The selection of the g(a) function best describing 
the experimental data should be made on the basis of criteria considering the 
difference between (Y_ and (Y,,,~. 
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